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A program of random-centroid optimization was written for Windows 95. The advantages of this
new program, over the previous program written in Quick Basic, are easier utilization using a
comprehensive step-by-step menu and more efficient and objective mapping. The new program
markedly improved the optimization efficiency, as applied to five multimodal functions. Global
optimums were found for all functions after 30-40 experiments. Even for the most difficult model,
optimization was achieved in ∼50 experiments. A graphical approach enabled by programming in
the Windows environment can be a powerful tool for solving nonlinear, multimodal optimization
problems, which may be encountered in research and development in chemistry and biology.
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INTRODUCTION

The number of papers published on global optimiza-
tion in chemistry has dramatically increased since 1990.
This sudden increase in published papers may be due
to the introduction of a new algorithm, the “genetic
algorithm”, which is a general methodology used to
search for a solution space in a manner analogous to
the natural selection procedure in biological evolution
(Holland, 1975). This optimization framework is able
to provide a global optimum solution for problems when
gradient-based algorithms have failed. The results
obtained with it were comparable to the ones derived
from “simulated annealing” (Androulakis and Venkata-
subramanian, 1991). According to Marinari and Parici
(1992), simulated annealing is an efficient heuristic
method, which is used to find the absolute minimum of
functions with many local minima. It has been intro-
duced independently in the framework of the Monte
Carlo approach for discrete variables in the method of
Kirckpatrick et al. (1983). According to Yassien (1993),
who has employed a “level-set program” for global
optimization, it is possible that a problem in chemical
engineering possesses many local optima. He also
stated that because of the highly nonlinear nature of
the equations often involved, the above phenomenon
was quite common with engineering system designs.
Many other algorithms, e.g., Lipschitz optimization,
have also been used for global optimization (Horst et
al., 1995).
Considering that biological phenomena are generally

more complex than engineering problems, it is likely
that global optimization is more demanding in the
biological venue. In general, biological phenomena are

not easily expressed in the form of working equations.
Without working equations, automated optimization
using computers becomes more difficult. In contrast to
the term “computational optimization” that has been
used in the literature for optimization of working
equations, we herein define “experimental optimization”
[this term was already used by Schwefel (1981)], which
is carried out without the need for working equations.
Response values in experimental optimization are found
through experimentation and not by using working
equations.
A great majority of papers published on global opti-

mization are mostly for computational optimizations.
There are not many applications designed to search for
the global optimum by conducting experiments. Ex-
perimental optimization is useful and convenient for the
optimization of research and development problems
when working equations are unavailable. In the case
of biological phenomena, it is possible to overlook the
existence of the global optimum in experiments unless
proper optimization techniques are chosen.
Schwefel (1981) stated that the most reliable global

search method is the grid method, which is time-
consuming and, therefore, expensive. As an alternative,
random strategies have drawn attention due to their
simplicity, flexibility, and resistance to perturbations.
After investigating the feasibility of applying iterative
optimization techniques, such as sequential simplex
optimization and its derivatives, to food research and
processing (Nakai, 1982; Nakai et al., 1984; Aishima and
Nakai, 1986), we proposed a new algorithm, namely
random-centroid optimization (RCO). RCO consists of
a random search, a centroid search, and mapping, which
together constitute a search cycle (Nakai, 1990; Dou et
al., 1993). Mapping as an approximation of the response
surfaces was first introduced into super simplex opti-
mization (Nakai et al., 1984). Visualization of the
progress of the optimization sequence in the form of
maps in an attempt to visualize the response surfaces
greatly improves the optimization efficiency. However,
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it relies heavily on subjective human judgment for the
interpretation of the maps.
Visual Basic is a remarkable improvement on Quick

Basic, as text language and graphic language are
combined. It is possible, therefore, to facilitate the
mapping process in RCO, thereby enhancing objectivity
and reliability in predicting the location of the true
optimum. As a result, the approach taken in this study
provides a practical solution to global optimization
problems rather than a purely mathematical solution.
As well, an empirical approach such as RCO is advanta-
geous because even nonmathematicians can readily
manipulate the RCO method due to the simplicity of
both the algorithm and the computer operation.
Mutation in biology is a sudden departure from

heredity caused by a change in a gene or chromosome.
Since the mutations cannot be predicted, random muta-
tions are customarily used as an important step in
genetic engineering to mimic Darwinian evolution.
However, as an optimization strategy, completely ran-
dom approaches are inefficient because they rely solely
on luck or chance, and some regularization is necessary
(Schwefel, 1981). Therefore, the search cycle of RCO,
which consists of a regulated random design, a central
search around the best response, and mapping as
defined by Nakai (1990), could be an appropriate
algorithm for optimization of site-directed mutagenesis.
The RCO may be especially useful in biology when
multimodal phenomena are present, as exemplified in
the following paper (Nakai et al., 1998). Two heat stable
peaks appeared during the optimization of the heat
stability of Bacillus stearothermophilus neutral pro-
tease, through mutation of a 16 amino acid active-site
helix.
The objectives of this paper were to write an RCO

program in Windows 95 to facilitate interpretation of
maps and to simultaneously simplify the relatively
involved procedure of RCO. A great deal of work was
expended in randomizing model computations as we
believe that the correct reading of maps is extremely
critical to the successful optimization of multimodal
phenomena. It is our intention to establish a reliable
optimization strategy so that it can be applied to site-
directed mutagenesis.

EXPERIMENTAL METHODS

The computer program for the RCO of Nakai (1990) was
rewritten for Windows 95 using Microsoft Visual Basic (version
4.0, 1995). The following modifications to the RCO program
were made to simplify the use of the program and to improve
the reliability of mapping. The new RCO program is posted
on the website http://www.interchange.ubc.ca/agsci/foodsci/
rco.htm for those who are interested in downloading the RCO
program to their PCs.
Replacing the Previous Itemized Menu System with

a New Step-by-Step Menu. The complicated menu system
previously used in the paper of Dou et al. (1993) was replaced
by a comprehensive operation chart (Figure 1) using the
multiple-document interface (MDI) of Visual Basic 4. Each
cycle consists of a regulated random search (Nakai, 1990), a
centroid search (Aishima and Nakai, 1986), and mapping
(Nakai et al., 1984).
Simultaneous Shifts. When multiple optima exist, a shift

of the search toward other potential optima is required;
however, stepwise shifts can frequently fail to overcome a dip
or hill located between two optima. Therefore, it is necessary
to skip certain steps in the stepwise shift design to overcome
this obstacle. Starting from the current best level (best), the
distance between the best and a target level (target) was
divided into five equal divisions and the third division was
used for comparing the response value with that of the current
best. Two cases are considered: (1) For determining the shift
direction, targets are set at both higher and lower level values
than that of the current best value. (2) When the shift
direction is certain, two targets with different shift distances
from best, usually a relatively high target value and the value
half that distance, are entered and their response values are
compared. The shift with better response is kept and the
search is continued into subsequent shift divisions, in the
direction that may yield a superior response value.
Line Drawing on Maps. To draw “trend lines” on a map

for approximating the response surface, the entire search space
for each factor is divided into three equal subdivisions (Figure
2C,D). Datapoints qualified to be linked, thereby forming
trend lines for a factor, are those that belong to the same
subdivisions for other factors. In Figure 2, datapoints that
can be linked are 1-2-3, 4-5, and 6-7 for factor 2, because
members of each group fall within the same subdivisions for
factors 1 (Figure 2C) and 3 (Figure 2D). While Figure 2A
without mapping shows no trends in responses, Figure 2B,
which shows linked datapoints, clearly indicates that the
search space to be used for factor 2 in the subsequent cycle
can be narrowed to the vicinity of datapoint 8. The number

Figure 1. Operation chart. MaxMin is the option button for selecting maximization or minimization. “Select cycle” contains four
option buttons for cycles 1-3 and SimShift. Additional cycles 4 and 5 are for optimizations involving a large number of factors.
After these option buttons have been “clicked”, the processes in each procedure list should be followed step-by-step for random
search, centroid search, and summary/mapping. The two digits after each step title are the identification numbers to show the
step in use.

Random-Centroid Optimization J. Agric. Food Chem., Vol. 46, No. 4, 1998 1643



of subdivisions of searchable space was reduced to three in
this study, from four in the previous paper (Nakai, 1990). This
change was intended to increase the number of trend lines
that could be drawn, thus providing more useful information
on the whereabouts of the optimum. A drawback of this
modification, however, is that there may be a decrease in the
reliability of trend lines drawn.
As shown later, when a factor appears to be irrelevant to

the optimization, as determined by the absence of a certain
trend on maps, it should be eliminated from the selection of
datapoints for line drawing as soon as possible. This rule
increases the number of trend lines drawn on the maps and
improves the accuracy of the visualized response surface.
Meanwhile, a new strategy was introduced by eliminating
factors on purpose. It was found that the clearer trends were
generated for improving the searching capability obtained from
mappingsa process referred to as intensified line drawing. A
mapping process for automatically eliminating one or two
factors in sequence has been included in the RCO program.
This eliminates the labor involved in manual elimination of
factors. If more than two factors are to be eliminated, however,
manual calculations are still compulsory.

Multimodal Functions To Be Used in Model Optimi-
zation Computation. A steep-sided helical valley of Fletcher
and Powell (1963) that was previously used (Nakai, 1990),
Wood’s function (Reklaitis et al., 1983), Heese’s function
(Visweswaran and Floudas, 1990), and a function used for
simulated annealing (Curtis, 1994) were employed for model
optimizations in this paper. Meanwhile, an unconstrained six-
factor function was constructed according to the method of
Bowman and Gerard (1967) because it was difficult to find an
appropriate six-factor function in the literature. Most multi-
modal six-factor functions found in the literature are con-
strained, and we found that constrained functions are difficult
to randomize. A randomized six-factor multimodal function
was constructed by combining three randomized optimum
locations of the same six-factor function.
Randomization of Model Functions. To avoid influence

by knowledge of the optimum’s location when defining search
spaces for the subsequent cycle, the optimum level value of
each factor was randomized in the model functions that were
used for demonstrating map reading. The model functions
used were randomized as follows: (1) The initial search range
for all factors was set from 0 to 1.0. (2) The range of 0.1-0.9

Figure 2. Maximization in a three-factor optimization to illustrate the principle of mapping: (A) before drawing trend curves on
scattergram of factor 2 (location of the maximum is unclear); (B) after mapping (lines are pointing toward the maximum); (C and
D) three equal subdivisions of factors 1 and 3 to find groups of datapoints that are common in the subdivisions of factors 1 and
3, respectively. The datapoints, which fall in the same subdivision, can be linked to draw trend curves on maps, as shown in (B).

1644 J. Agric. Food Chem., Vol. 46, No. 4, 1998 Nakai et al.



was randomized at intervals of 0.1. The program included
three degrees of difficulty in finding the global optimum, i.e.,
“beginner”, “advanced”, and “most advanced”. The beginner
rank and advanced rank eliminated 0.4, 0.5, and 0.6 and
combinations of (0.4 and 0.5) and (0.5 and 0.6) as factor levels,
respectively, while the most advanced rank was totally ran-
domized without any specific level values having been avoided.
The presence of the level values near 0.5 on the 0-1.0 scale
makes determination of the search direction on maps very
difficult as it is equally probable that the optimum locates on
either side of 0.5.

RESULTS AND DISCUSSION

Rewriting the RCO has resulted in a much more user-
friendly program, especially due to the capacity to
readily obtain printed maps using a laser printer.
Flexibility in the combination of a search cycle and
simultaneous shifts is now feasible due to the introduc-
tion of the stepwise menu (Figure 1). The simultaneous
shifts for all factors are carried out when the shift
direction of each factor is apparent on the maps.
However, when it is unclear in which direction a shift
should occur, the simultaneous shifts can be also used
to determine the shift direction. Shifts in the search
spaces of different factors should be carried out simul-
taneously; otherwise, interactions between factors, which
interfere with complete optimization, may occur.
Every effort was made in this study to increase the

number of trend lines that could be drawn on maps, as
efficient interpretation of the maps greatly increases the
overall optimization efficiency. In the past, there was
an inadequate number of trend lines, especially when
the number of factors was large or in early cycles when
the number of datapoints was small. An example was
illustrated in the paper of Lee et al. (1994), in which no

lines could be constructed on the maps for the seven-
factor optimization.
A new rule introduced in this study is that only truly

influential factors should be employed in the line
drawing, as described above. This is extremely impor-
tant in achieving efficient optimization. The effect of
eliminating factors that do not influence the optimum
is shown in Figure 3 for the maximization of a five-factor
unimodal function (model 2 in Table 1, Nakai, 1990):

After the constant term was changed from 1.34 (Nakai,
1990) to 3.66 in equation 1, the theoretical maximum y
is 32.0. In computation, the search spaces used for cycle
1 of x1-x6 were all 0-1.0. An uninfluential factor x6
was purposely added to the influential factors x1-x5 in
eq 1 to illustrate the effect. Figure 3A was drawn using
all factors except x3, while Figure 3B was drawn after
x6 had been eliminated from the computation. From
Figure 3A, it is unclear if the search space for cycle 2
should be space levels higher than the current best level
of 0.69. However, the rule, “upper lines nearer the best
response are more reliable in finding trend than lower
lines in the case of maximization”, should be taken into
consideration. This means that the short line near x3
) 0.69 with a negative slope cannot be ignored. The
trend lines of Figure 3B obtained after the elimination
of x6 more clearly indicate that the search space for cycle
2 should be near 0.5 and an appropriate range might
be 0.4-0.7. Figure 3C demonstrates the irrelevance of

Figure 3. Effects of screening of factors on the accuracy of maps (six-factor maximization): (A) lines drawn for x3 using x1, x2,
x4, x5, and x6 for computation; (B) lines drawn for x3 using x1, x2, x4, and x5 after x6 is eliminated from computation; (C) map for
x6. The digit underneath each map between 0 and 1 (i.e., 0.69 and 0.49) is the level value of the largest response.

y ) 3.66 + 33.6x1 + 25x2 + 34.4x3 + 22x4 + 7x5 -
12x1x3 - 10x1x4 - 4x1x5 - 16x2x3 - 12x2x4 - 6x2x5 -

15x1
2 - 18x2

2 - 20x3
2 - 26x4

2 - 10x5
2 (1)
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x6 to the response, as there is no clear trends toward
the maximum over the entire range of factor level from
0-1.0.
A general rule was developed for determining the

search spaces to be used in a subsequent cycle from
observing trend lines obtained from the Line Draw
command button. The scroll box on the horizontal scroll
bar at the bottom of maps is moved after the Locate
Optm button is activated (Figures 3 and 4). Upon
pressing the Locate Optm button, the scroll box is
automatically positioned at the level point correspond-
ing to the best response value in the current cycle
(Figure 4A). The scroll box should then be moved to a
higher or lower level, and then newmaps appear (Figure
4B,C). The rule reads “If trend lines point in the
opposite direction to the scroll box’s movement from the
current best point, mapping should be repeated by
moving the scroll box in the other direction until the
directions of both the box movement and trend lines
match”. In Figure 4, three different scroll box positions
are shown, at level 0.6 for the best response (Figure 4A),
lower than (A) (Figure 4B), and higher than (A) (Figure
4C). Figure 4C shows the case when the two moves
match; therefore, the search space for cycle 2 should be
higher than 0.6.
When the search directions of most factors, but not

necessarily all factors, cannot be defined by mapping,
it is recommended that the simultaneous shifts proce-
dure be used rather than proceeding to the next cycle.
Frequently, this is found to increase the efficiency of
reaching the optimum. For example, in eq 1, a response
value of 31.907 versus the theoretical maximum of 32.0
was found after 25 experiments by following the se-
quence cycle 1sSimShiftscycle 2, compared with a

value of 31.838 after 33 experiments by following the
order of cycles 1-3. It was found that early adoption
of a simultaneous shift during the optimization process
expedited the successful optimization to a great extent.
As a caution, though, excessively premature use of
simultaneous shifts is not recommended as it decreases
the reliability of the response surface depicted by
mapping.
The steep-sided helical valley of Fletcher and Powell

(1963) contains two minima

where 2πθ(x1,x2) ) arctan(x2/x1) when x1 > 0 and ) π +
arctan(x2/x1) when x1 < 0. When Morgan-Deming
simplex optimization was applied to this function, the
search was stalled at local optima 5 times in a total of
20 optimization runs (Nakai, 1990). On the contrary,
when the current RCO for Windows was applied, no
stalling occurred during >50 runs.
The RCO program was also applied to Wood’s function

(Yassien, 1993; Reklaitis et al., 1983) after modifica-
tions:

No stalling at local optima occurred after >30 RCO
runs. It was observed during the optimization process

Figure 4. Reading of maps to determine search spaces for the subsequent cycles (same optimization as in Figure 3): (A) trend
lines drawn for x1 by placing the scroll box at the best response; (B) trend lines drawn by placing the scroll box at a level value
lower than in (A); (C) trend lines drawn by placing the scroll box at a level value higher than in (A). The digit underneath each
map between 0 and 1 is the level value of the largest response located by the arrow.

y ) 100{[x3 - 10θ(x1,x2)]
2 + [xx12 + x2

2 - 1]2} +

x3
2 + 10 (2)

y ) [100(x2 - x1
2)2 + (1 - x1)

2 + 90(x4 - x3
2)2 +

(1 - x3)
2 + 10.1{(x2 - 1)2 + (x4 - 1)2} +

19.8(x2 - 1)(x4 - 1)]/100 + 10 (3)
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that there was at least one local optimum in addition
to the global optimum in this model function.
As a more complicated multimodal model, Heese’s

function (Yassien, 1993; Visweswaran and Floudas,
1990) was used for computation

subject to x1 + x2 e 6 and x1 - 3x2 e 2. Other
constraints included in the original function were
manipulated by proper selection of search spaces. Ac-
cording to Visweswaran and Floudas (1990), there exist
18 local minima in this model. No stalling at local
minima occurred after 20 RCO runs. In the most
difficult case, ∼50 experiments were required to estab-
lish the global optimum. In contrast, computational
optimization using the Level Set program (LSP) re-

Figure 5. Example of map for x1 in cycle 1 obtained by eliminating one or two factors in minimization of Wood’s four-factor
function: (A) after elimination of one factor; (B) after elimination of two factors. The arrow underneath each map points to the
location of the lowest response value. Maps A and B were from different optimization runs.

Figure 6. Mapping of the randomized multimodal six-factor model function in cycle 1 search: (A) monitor screen for response
value computation (three optimum levels in a ratio of 5y1:3y2:3y3; beginner’s randomization used in this computation to avoid
unnecessary overlapping between the second and third peaks); (B) X3 is a mixture of peaks at level values of 0.7, 0.5, and 0.1; (C)
X1 map of single six-factor function with the maximum at level value of 0.8. The arrow underneath each map points to the location
of the highest response.

y ) -25(x1 - 2)2 - (x2 - 2)2 - (x3 - 1)2 - (x4 - 4)2 -

(x5 - 1)2 - (x6 - 4)2 + 320 (4)
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Figure 7. RCO minimization of randomized Wood’s four-factor function. Axis labels and plot limit values of the maps are the
same as those of Figure 5. (A) Cycle 1. Experiments 1-11 in summary (step 13 in Figure 1) were selected from two runs of the
random search (step 11), 9 experiments each. Repeated runs were necessary as the response values were too high and mapping
was not expected to be reliable. Experiments 12 and 13 are the centroid search (step 12). On the basis of the maps (only one
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representing map is shown for each factor), the search spaces for cycle 2 were selected (B). The factor names appearing in the
frames at the upper right corner are the factors eliminated from the computation for drawing trend lines. (B) Cycle 2. From these
maps, it was decided to proceed to simultaneous shifts for X1 and X4 (C). To determine the extent of shift of X1, from the current
best (minimum) of 0.25, targets were set at 0.64 and 0.99. To determine the direction to shift X4 from the current best of 0.61,
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targets were set at 0.41 and 0.81 [see the combination table at top of (C)]. (C) Simultaneous shifts. By comparing four combinations,
experiment 20 showed the lowest response. This indicated that X1 should shift toward 1.0 and X4 should be increased. The existence
of another minimum is now certain at X1 = 0.8-0.9 because of the success in the simultaneous shifts, evidenced as a lower
response of 63 for the fourth shift division compared to 86.12 for the 3rd shift division. It was, therefore, decided to conduct a
random spot search (step 11) in new unexplored spaces (D). (D) Spot search. Experiments 1-9 are from step 11, and experiments
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10-14 were extracted from SimShift (C), because they also belong to the search in the new space. Experiment 6 is the nearest
to the global minimum (supposedly unknown).

Access to Global Minimum

X1 X2 X3 X4 response optimum

cycle 1 0.25 0.25 0.75 0.61 24.8 local
cycle 2 0.29 0.23 0.72 0.66 18.99 local
spot search 0.85 0.28 0.83 0.66 12.77 global
cycle 3 0.82 0.2 0.83 0.7 11.48 global
minimum 0.8 0.2 0.9 0.8 10.0 global
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quired large numbers of iterations (Yassien, 1993). The
numbers of iterations required were 50 824 and 14 064
for eqs 3 and 4, respectively. It should be cautioned,
however, that direct comparison of the number of
iterations published in different papers is inappropriate
unless the estimated response values finally achieved
as the estimated global optimums are almost the same
between the algorithms that are being compared. How-
ever, randomization of Heese’s function failed with RCO
because of constraints, thereby restricting broader vari-
ability of factor level values when introduced by ran-
domization. This is a why unconstrained functions are
needed for randomizing six-factor functions.
A two-factor function used by Curtis (1994) as an

example of application of simulated annealing was

This model contains several local minima surrounding
the global minimum of 0. In the work by Curtis (1994),
the search converged very close to the global minimum
in 99 accepted steps of 561 experiments. In practice,
slightly over 85 steps with several datapoints for each
step yielded a response value lower than 0.5 (Curtis,
1994). When RCO was applied to the same model, after
fewer than 20 experiments, a response value below 0.5
was attained without stalling on any local minimum.
Curtis (1994) commented that the genetic algorithm is
more complex than the conventional serial processing
mode and simulated annealing is conceptually simpler
and can be readily programmed. However, because of
the serial stepwise search of simulated annealing by
slowly moving from an initial point toward the optimum,
high optimization efficiency cannot be expected. There-
fore, it is an unsuitable method for use in expensive
biological experiments, such as site-directed mutagen-
esis.
In the study of the Level Set program by Yassien

(1993) based on the algorithm of Chew and Zheng
(1988), it was found that multimodal phenomena are
not unusual in engineering projects. Also recently, a
new approach, namely the “genetic algorithm”, was
introduced that was claimed to be useful in global
optimization (de Weijer et al., 1994). However, since
both methods require large amounts of CPU time, they
are unsuitable for sequential experimental searches for
the global optimum. In most of the previous optimiza-
tion studies, it was thought that the optimum had been
reached on the basis of different rules for completion,
such as “no further improvement can be achieved by
continuing iteration”. However, it is possible that these
optima were local optima and that the global optimum
exists at another location in the search space.
Improving the objectivity and accuracy of predicting

the location of the global optimum is most critical in
the mapping, and this has been achieved using a
Windows program. In general, graphic methods such
as mapping to locate optima represent a new approach
for solving complicated mathematical problems, such as
global optimization. However, it is worth noting that
mathematical functions that are used in validating the
approach should be asymmetric. Symmetric models
such as eq 5 are not recommended for this purpose since
mutual cancellation of two symmetric local optima may
occur during the search by averaging the level values.
To improve the objectivity of map reading, level values

of model functions were randomized to mask the opti-

mum location so that the selection of search spaces on
maps was not unduly facilitated. Randomizing the
optimum location during practice runs of a model
optimization is recommended to assist each user in
gaining familiarity with judging of the trend curves on
maps. This approach would eliminate the need for
complicated mathematical assessment of the maps.
The greatest problem in mapping is the fact that the

number of trend lines decreases as the number of factors
increases, since there is less of a chance that datapoints
will belong to a common subdivision of all factors other
than the one under consideration (depicted in Figure
2). Since the presence of an adequate number of trend
lines is extremely important for interpretation of the
maps, an “elimination” method has been introduced to
intensify the line-drawing process. In the case of a
three-factor optimization illustrated in Figure 2, the
datapoints of factor 2 are linked when they belong to
the same subdivisions as functions of factors 1 (Figure
2C) and 3 (Figure 2D). This rule was extended to “ ...
when they belong to the same subdivision as functions
of either factors 1 or 3”. Despite the possibility of
decreasing the reliability of the trend curves drawn on
maps, the gain in useful information from increasing
the number of trend lines in the response surface
overwhelmingly compensates for the preceding disad-
vantage.
In the case of multimodal functions, mapping after

the elimination of one or two factors other than the
factor in question increases the number of trend lines
while sacrificing the accuracy of the lines. An example
is the case of minimization of Wood’s function, shown
in Figure 5. Parts A and B of Figure 5 are mapping for
data of cycle 1 of Wood’s function after the elimination
of one and two factors from the mapping computation,
respectively. The possibility of the presence of two
optima is apparent. The true, global optimum in this
case is at x1 ) 0.9. There is a local optimum at around
x1 ) 0.1, while the location of the current best minimum
is at x1 ) 0.38, where no global or local minimum exists
for this function. We found that this intensified line-
drawing process is extremely useful for the efficient
search for the global optimum.
Another example shown in Figure 6 was obtained

from maximization of the unconstrained six-factor func-
tion:

The different locations of three maxima computed
randomly were combined to make a trimodal function
at a ratio of 5y1:3y2:3y3. The map of cycle 1 using the
intensified line drawing shows potential locations of
three maxima at around x3 ) 0.1, 0.5, and 0.7 (Figure
6B). These maxima should correspond to y3, y2, and y1,
respectively, as shown in the preset level values (opti-
mum levels in Figure 6A). On the contrary, the map
for the single six-factor function (Figure 6C) shows that
all trend curves drawn with and without the intensified
line drawing point toward a level value of x1 ) 1.0. The
true x1 is at 0.8 for y1 (first column of optimum levels
in Figure 6A). This finding considerably facilitated the
global optimization of the randomized unconstrained

y ) x1
2 + 2x2

2 - 0.3 cos(3πx1) - 0.4 cos(4πx2) + 0.7
(5)

y ) 33.6x1 + 25x2 + 41.4x3 + 10.8x4 + 8.4x5 +
10.4x6 - 4x1x2 - 12x1x3 - 10x1x4 - 4x1x5 - 16x2x3 -

12x2x4 - 6x2x5 - 10x3x6 + 16x4x6 - 2x5x6 - 15x1
2 -

18x2
2 - 20x3

2 - 26x4
2 - 10x5

2 - 6x6
2 (6)
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six-factor function in model computation. We observed
that it was difficult to define the location of the global
optimum for combined multimodal functions such as
this. It is not at the set location of the largest peak,
that is, the peak at X3 ) 0.7 (y1) with the computed
maximum response of 188.6 as shown in Figure 6A. The
true optimum was found at around X3 ) 0.6 with the
response value of 273, which is close to 261, the total of
theoretical values of the first and second peaks (5y1 +
3y2). The maximum y value of eq 6 itself without
randomization is 32.68 at x1-x6 values of 0.8, 0.3, 0.5,
0.2, 0.1, and 0.7, respectively.
An explanation of the finding that mapping by using

the intensified line-drawing process facilitates the de-
tection of other optima is difficult. However, it is
possible that ignoring a factor would result in a change
in the angle of viewing points for multiple peaks (or
dips). Changing the viewing angle may allow new peaks
to appear from behind other peaks. Unfortunately,
verifying this hypothesis is extremely difficult because
it cannot simply be illustrated on 3-D maps as these
maps can accommodate only two factors in addition to
the response assigned to the remaining dimension. It
is impossible to ignore any factors from two-factor
mapping as more than two factors are needed for
applying the intensified line-drawing method.
An example of the entire optimization process with

51 experiments of the RCO of Wood’s function is shown
in Figure 7. The random search (step 11 in Figure 1)
was repeated because some response values were too
large (>1000); thus, there was no possibility of obtaining

reliable maps for narrowing the search space for cycle
2. For most usual optimizations, repeating the random
search within the same cycle would be unnecessary.
After cycle 2 was run with the best response of 18.99,
simultaneous shifts were attempted for two factors of
x1 and x4 to move toward another optimum and for
direction determination, respectively (Figure 7C). Al-
though this SimShift was successful, it was not possible
to quickly home-in on the optimum. A new cycle 1 in
the search spaces in unexplored areas (spot search) was
then conducted because of the possibility of another
minimum existing in the area of x1 > 0.6. An additional
10 experiments in cycle 3 (not shown in Figure 7) gave
only a slight improvement to the response from 12.77
to 11.48 at x levels of 0.82, 0.2, 0.83, and 0.7 compared
to the theoretical minimum of 10.0 at 0.8, 0.2, 0.9, and
0.8. The total number of experiments required for
completion of this optimization was 49 by summing cycle
1 (13), cycle 2 (9), SimShift (6), spot search (11, not
including 6 from SimShift), and cycle 3 (10). It is
interesting to note that the possibility of the presence
of another minimum was already apparent in cycle 1
as shown in the X1 map appearing as trend lines at the
top right corner in Figure 7A. It should be emphasized
that this optimization computation was made without
any information on the location of the global optimum.
By no means is it the best example of the most efficient
optimization of this particular function.
It appears that the whole operation of the RCO is very

complicated. However, this example was chosen to
demonstrate optimization of a complicated multimodal

Figure 8. Summary maps of 18 experiments for a chemical synthesis. Four factors of temperature, heating time, and volume
and moisture of the rawmaterial were optimized. During the progress of optimization, moisture was found to be irrelevant according
to the map. After moisture was eliminated from the factors, the optimization was completed in 18 experiments. These maps
demonstrate the important effects of temperature (A), time (B), and volume of raw material (C) on the product yield in this
chemical synthesis.
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function, which was reported in a global optimization
paper (Reklaitis et al., 1983). This example was also
intentionally chosen to demonstrate how to solve dif-
ficult optimization problems by utilizing a combination
of different procedures within the RCO program. In
most daily experiments for research and development,
simply repeating a set of experiments for random and
centroid searches in a cycle will readily bring about the
optimum. Figure 8 is an example of the final maps after
complete optimization of a chemical synthesis conducted
by the request of a local industry. This is the result of
18 experiments to maximize the product yield of the
chemical synthesis by changing heating temperature
(80-150 °C), heating time (5-20 min), and volume (20-
60 mL) and moisture (0-50%) of the raw material,
which constitutes a four-factor optimization. Moisture
was eliminated from the mapping computation during
optimization because its irrelevance to the yield was
observed on maps as a pattern of random scattering of
datapoints (data not shown) similar to the example of
model computation shown in Figure 3C. The best
condition for the synthesis was found to be heating 38-
40 mL of the raw material at 124 °C for 13-15 min.
The critical effect of the heating temperature is clearly
shown on the map (Figure 8A). For ordinary optimiza-
tions such as this case of chemical synthesis, without
complication of multimodal phenomenon, simultaneous
shifts are rarely required.
The most probable multimodal cases are those requir-

ing multiple responses (Nakai, 1990; Dou et al., 1993).
An example is simultaneous maximization of product
yield, texture, and biological properties, such as nutri-
tional value, or minimization of color and off-flavors
simultaneously. As the best conditions for each quality
attribute may be different, simultaneous achievement
of the best qualities for different attributes would
become multimodal.

CONCLUSIONS

The new Windows version of RCO is simpler to apply
than other global optimization algorithms and suitable
for optimizing multimodal cases. Therefore, it could be
a powerful tool in improving the efficiency of research
and development in chemistry and biology. The success
of the RCO in achieving highly efficient global optimiza-
tion is due to regulated random search, centroid search,
and mapping. Sometimes, global optimizations may
require mapping after the deliberate elimination of some
factors and simultaneous shifts. Application of the RCO
program to site-directed mutagenesis will be reported
in the following paper.
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